
Applied Cyber Weekly Meeting | March 8, 2024Aditya Saligrama

Fundamentals and
Footguns of Cloud Security

Motivating Example

March 7, 2024

What is a footgun?

Footguns are features that are
designed to do the wrong thing easily,
and hard to do the right (safe) thing.

Examples:

● strcpy
● Firebase security rules
●

The Cloud Application Model

The main value that public cloud providers offer is managed service abstractions
above hardware. This is sometimes called serverless computing.

Duckbill Group – A Simple, Yet Effective Cost Optimization Framework, 2023

The Shared Responsibility Model

AWS assumes responsibility for its own infrastructure.
You assume responsibility for how you use AWS’s infrastructure.

Traditional vs Serverless Application Architecture

What are some common security
challenges and vulnerabilities
facing deployed web applications?

The OWASP Top Ten (2021)

1. Broken Access Control

2. Cryptographic Failures

3. Injection

4. Insecure Design

5. Security Misconfiguration

6. Vulnerable and Outdated Components

7. Identification and Authentication Failures

8. Software and Data Integrity Failures

9. Security Logging and Monitoring Failures

10. Server Side Request Forgery (SSRF)

Which of these does serverless design help with?

The OWASP Top Ten (2021)

1. Broken Access Control

2. Cryptographic Failures

3. Injection

4. Insecure Design

5. Security Misconfiguration

6. Vulnerable and Outdated Components

7. Identification and Authentication Failures

8. Software and Data Integrity Failures

9. Security Logging and Monitoring Failures

10. Server Side Request Forgery (SSRF)

The OWASP Top Ten (2021)

1. Broken Access Control

2. Cryptographic Failures

3. Injection

4. Insecure Design

5. Security Misconfiguration

6. Vulnerable and Outdated Components

7. Identification and Authentication Failures

8. Software and Data Integrity Failures

9. Security Logging and Monitoring Failures

10. Server Side Request Forgery (SSRF)

Why are access controls and permissions important?

To get sensitive data from this setup, we
need to compromise the PHP web app to
get DB credentials (and maybe a network
posture we can hit the DB from).

Relevant initial attack vectors:
● Command injection
● LFI + upload filter bypass
● SQL injection
● etc.

Why are access controls and permissions important?

To get sensitive data from this setup, we
need to get authentication to the AWS
account and authorization to access the
cloud data (DB and S3) resources.

Relevant initial attack vectors:
● Exposed AWS credentials
● S3 buckets with public access
● CI/CD code compromise/supply chain

Methods of Accessing AWS

● AWS Console (“clickops”)
● AWS CLI
● AWS Software Development Kit (SDK)

An interaction with AWS via any of these methods
creates an API call (an Action).

Identity and Access Management on AWS

IAM Conceptual Model

Key IAM Definitions (Agent-Side)

● Principal: A human user or workload that can make a request for an action or
operation on an AWS resource
○ e.g. Your user account using the AWS CLI, or code running on an EC2 instance

● Role: An IAM construct that can be assigned scoped permissions
○ Principals can be assigned, or assume, roles; multiple principals can assume a single role
○ Each principal can only assume one IAM role at a time, but may have permissions for multiple

● Policy: A listing of the permissions that IAM roles are given
○ Written in JSON
○ e.g. Allow read and write to all S3 buckets starting with applied-cyber

Key IAM Definitions (Resource-Side)

● Resource: Objects within AWS services
○ e.g. EC2 VMs, S3 buckets

● Action: Operations performed on resources, specific to services
○ e.g. create an EC2 VM, list objects in an S3 bucket

● Policy: A listing of the permissions that govern access to the resource itself
○ e.g. deny public downloads from the S3 bucket

Given a principal assuming a role who wants to
perform an action on a given resource, AWS
decides whether to authorize or deny the request
by evaluating the role’s or resource’s policy.

Example Role Policy (1)

{

 "Version": "2012-10-17",

 "Statement": [{

 "Effect": "Allow",

 "Action": "*",

 "Resource": "*"

 }]

}

AdministratorAccess:
Allow every action on
every resource

Example Role Policy (2)

{ "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "rds:*",
 "Resource": ["arn:aws:rds:region:*:*"]
 }, {
 "Effect": "Allow",
 "Action": ["rds:Describe*"],
 "Resource": ["*"]
 }]
}

Wildcards allowed in
ARNs and actions

IAM Roles: Attaching Policies to Principals

● IAM roles are a way to temporarily grant specific permissions to specific
principals
○ Principal assumes role that has policies (allow / deny) attached

● Two components
○ Permission Policy: What can the role do? (previous slides)
○ Trust Policy: Who can assume the role?

Assuming IAM Roles

● Access to roles is granted via Security Token Service (STS)

aws sts assume-role \
--role-arn arn:aws::iam:123456789012:role/my_role \
--role-session-name my_session

● Outputs:
○ Access Key ID
○ Access Key Secret
○ Session Token
○ Setting as environment variables for AWS API calls (via CLI) grants access to role permissions

Note: AWS services assume roles through internal STS API calls.

IAM Role Trust Policies

Motivation: don’t want arbitrary principals to assume roles with access to sensitive resources.

{

 "Effect": "Allow",

 "Principal": {

 "AWS": "arn:aws:iam::111122223333:user/saligrama"

 },

 "Action": "sts:AssumeRole"

}

All trust policies apply to
Principals and allow the
sts:AssumeRole action.

IAM Role Trust Policies

Motivation: don’t want arbitrary principals to assume roles with access to sensitive resources.

{

 "Effect": "Allow",

 "Principal": {

 "Service": "ecs.amazonaws.com"

 },

 "Action": "sts:AssumeRole"

}

Trust policy principals can
be services, too!

Let’s play around with cloud
(in)security! https://flaws2.cloud

https://flaws2.cloud

