Fundamentals and
Footguns of Cloud Security

Aditya Saligrama Applied Cyber Weekly Meeting | March 8, 2024

Motivating Example

Request

Pretty Raw Hex

1

Nou s w N

©®

10
11
12
13
14
15
16
17
18

GET

/api/dev/| /http://169.254.169.254/latest/meta-data/identity-credentials/ec2/

security-credentials/ec2-instance HTTP/2
Host:

Cookie: session=

eyJlb

NKO0S5

VzFoS|

4tdVhnMHZHdHZwbVJaS3NyN2silCJ1c2VyaWQi0iJBZG1@eWEQU2FsaWdyYW1lhIn@=; session.sig=
5z1pkd1Bk3yjXGexyuucloByd6A

Sec-Ch-Ua: "Chromium";v="121", "Not A(Brand";v="99"

Sec-Ch-Ua-Platform: "mac0S"

Sec-Ch-Ua-Mobile: 70

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/121.0.6167.160 Safari/537.36

Content-Type: application/json

Accept: */*

Sec-Fetch-Site: same-origin

Sec-Fetch-Mode: cors

Sec-Fetch-Dest: empt
Accept-Encoding: gzip, deflate, br

Accept-Language: en-US,en;q=0.9
Priority: u=1, i

Response

Pretty Raw Hex Render

PNV A WNE

©

10
11
12
13
14

HTTP/2 200 OK

Content-Type: application/json; charset=utf-8

Date: Thu, @7 Mar 2024 23:54:39 GMT

Server: nginx/1.18.0 (Ubuntu)

Etag: W/"65a-GV7/gSuYpQNzHr@/4RcabzuzkXY"

X-Powered-By: Express

X-Cache: Miss from cloudfront

Via: 1.1 b7621cdeel38918b674c9ch957a70492.cloudfront.net (CloudFront)
X-Amz-Cf-Pop: SF053-P6

Alt-Svc: h3=":443"; ma=86400

X-Amz-Cf-Id: unfEqQRF1iQ84UsEqB_TdGPgNXFPbVISgWYroY5VAMaV@E6SVoSrFzg==

{

"bodytext":

“{\n \"Code\" : \"Success\",\n
\",\n \"AccessKeyId\" : \"ASIAQ
NKrH3doS6gNsFBNY{\" \n I3

\"LastUpdated\" : \"2024-03-07T723:04:17Z\",\n

ZTX7IWH3CT7QJIFG\",\n \"SecretAccessKey\" M

'100Jb3JpZ21uX2ViEM wEaCXVzLXdLlc30tMiJHMEUCIES rSTOWMCL

5LU41KEd+dRTv/aDaoCQFU910VCcIHIVbzvWfPQQ ",\n \"Expiration\" : \"2024-03-08T05:10:21Z\"\n}"

March 7, 2024

What is a footgun?

Footguns are features that are
designed to do the wrong thing easily,
and hard to do the right (safe) thing.

Examples:

e strcpy
e Firebase security rules

The Cloud Application Model

The main value that public cloud providers offer is managed service abstractions
above hardware. This is sometimes called serverless computing.

Instances / VMs Containers

Datacenter Instances w/ Autoscaling Serverless

Duckbill Group — A Simple, Yet Effective Cost Optimization Framework, 2023

The Shared Responsibility Model

CUSTOMER DATA

CUSTOMER PLATFORM, APPLICATIONS, IDENTITY & ACCESS MANAGEMENT

RESPONSIBILITY FOR
Btein T INciEgolD OPERATING SYSTEM, NETWORK & FIREWALL CONFIGURATION

CLIENT-SIDE DATA NETWORKING TRAFFIC
ENCRYPTION & DATA INTEGRITY (:IizVSEYRS'TSE“:dEAEI?Dc;CZ:ESTr:) PROTECTION (ENCRYPTION,
AUTHENTICATION INTEGRITY, IDENTITY)

SOFTWARE

RESPONSIBILITY FOR HARDWARE/AWS GLOBAL INFRASTRUCTURE

SECURITY ‘OF’ THE CLOUD
AVAILABILITY ZONES EDGE LOCATIONS

AWS assumes responsibility for its own infrastructure.
You assume responsibility for how you use AWS’s infrastructure.

Traditional vs Serverless Application Architecture

BRE

AWS DynamoDB AWS Lambda Amazon S3

Amazon ECS AWS Fargate Amazon Aurora

phpphp 5 §E

ESXi | Hyper-V | AHV

AWS Cloud

Cloudfront $3 (Frontend) S3 (Public S3 (Private ACM Secrets Route 53 Lambda

CDN Imaies) Images) Certificates Manager DNS (Compression)

m VPC (in us-west-2)

Availability Zone us-west-2a Availability Zone us-west-2b

Public subnet

Public subnet

i Application

Application
Inbound Load Balancer HALGatEwWay. Load Balancer NAT Gateway
e b Qutholing Inbound (3 Outbound
[S I ' Traffic N Traffic > Traffic
® j '

Private subnet (w/ egress) Private subnet (w/ egress)

3>
B

ECS Fargate ECS Fargate
H Cluster \ Cluster
Private subnet (isolated) Private subnet (isolated)
Aurora Aurora
: Serverless DB Serverless DB

What are some common security
challenges and vulnerabilities
facing deployed web applications?

The OWASP Top Ten (2021)

1. Broken Access Control 6. Vulnerable and Outdated Components

2. Cryptographic Failures 7. Identification and Authentication Failures
3. Injection 8. Software and Data Integrity Failures

4. Insecure Design 9. Security Logging and Monitoring Failures

5. Security Misconfiguration 10. Server Side Request Forgery (SSRF)

Which of these does serverless design help with?

The OWASP Top Ten (2021)

1. Broken Access Control 6. Vulnerable and Outdated Components
2-Eryptographiefatures 7. Identification and Authentication Failures
3Intecton 8. Software and Data Integrity Failures

4. Insecure Design 9. Security Logging and Monitoring Failures

5. Security Misconfiguration 10ServerStdeReguestForsery(SSRE

The OWASP Top Ten (2021)

6. Vulnerable and Outdated Components
2-Eryptographiefatures 7. Identification and Authentication Failures
SIntecton 8. Software and Data Integrity Failures

9. Security Logging and Monitoring Failures

5. Security Misconfiguration 10ServerStdeReguestForsery(SSRE

?@ Security Labs

Tales from the cloud trenches: Amazon
ECS is the new EC2 for crypto mining

January 19, 2024

AWS THREAT DETECTION

Why are access controls and permissions important?

phpphp E G

[0 [0 1

To get sensitive data from this setup, we
need to compromise the PHP web app to
get DB credentials (and maybe a network

ESXi | Hyper-V | AHV posture we can hit the DB from).

Relevant initial attack vectors:

Command injection

LFI + upload filter bypass
SQL injection

etc.

Why are access controls and permissions important?

MG

AWS DynamoDB AWS Lambda Amazon S3

. AWS Cloud

To get sensitive data from this setup, we
need to get authentication to the AWS
account and authorization to access the
cloud data (DB and S3) resources.

7 Relevant initial attack vectors:
] s e Exposed AWS credentials

@ + e S3 buckets with public access
alels
Tefo

e CI/CD code compromise/supply chain
Amazon ECS AWS Fargate Amazon Aurora

Methods of Accessing AWS

e AWS Console (“clickops”)
e AWSCLI
e AWS Software Development Kit (SDK)

An interaction with AWS via any of these methods
creates an API call (an Action).

Identity and Access Management on AWS

IAM Conceptual Model

AWS Identity and
Access Management
Apply fine-grained
permissions to AWS Who
services and resources Workforce users and
workloads with IAM

Can access

Permissions with
IAM policies

What

Resources within your
AWS organization

Key IAM Definitions (Agent-Side)

e Principal: A human user or workload that can make a request for an action or

operation on an AWS resource
o e.g. Your user account using the AWS CLI, or code running on an EC2 instance

e Role: An IAM construct that can be assigned scoped permissions

o Principals can be assigned, or assume, roles; multiple principals can assume a single role
o Each principal can only assume one IAM role at a time, but may have permissions for multiple

e Policy: A listing of the permissions that IAM roles are given
o Written in JSON
o e.g. Allow read and write to all S3 buckets starting with applied-cyber

Key IAM Definitions (Resource-Side)

e Resource: Objects within AWS services
o e.g.EC2VMs, S3 buckets

e Action: Operations performed on resources, specific to services
o e.g.createan EC2 VM, list objects in an S3 bucket

e Policy: A listing of the permissions that govern access to the resource itself
o e.g.deny public downloads from the S3 bucket

Given a principal assuming a role who wants to
perform an action on a given resource, AWS
decides whether to authorize or deny the request
by evaluating the role’s or resource’s policy.

Example Role Policy (1)

1

"Version": "2012-10-17", « o
AdministratorAccess:

‘Statement”: [+ Allow every action on
"Effect": "Allow", ‘A(/,/'everyresource
"Action”: "x",

"Resource”: "*"
£

Example Role Policy (2)

§ "Version": "2012-10-17", Wildcards allowed in
"Statement": [{ ARNSs and actions
"Effect": "Allow",
"Action": "rds:x",
"Resource": ["arn:aws:rds:region:x:x"]

£, 1
"Effect": "Allow",
"Action": ["rds:Describex"],

"Resource": ["+"]

§]

IAM Roles: Attaching Policies to Principals

e ITAMroles are a way to temporarily grant specific permissions to specific
principals
o Principal assumes role that has policies (allow / deny) attached

e Two components

o Permission Policy: What can the role do? (previous slides)
o Trust Policy: Who can assume the role?

Assuming IAM Roles
e Access toroles is granted via Security Token Service (STS)

aws sts assume-role \
--role-arn arn:aws::1am:123456789012:role/my_zrole \
--role-session-name my_session

e Outputs:
o Access Key ID
o Access Key Secret
o Session Token
o Setting as environment variables for AWS API calls (via CLI) grants access to role permissions

Note: AWS services assume roles through internal STS API calls.

IAM Role Trust Policies

Motivation: don’t want arbitrary principals to assume roles with access to sensitive resources.

] All trust policies apply to

"Effect": "Allow" . Principals and allow the
sts:AssumeRole action.
"Principal”: 3

"AWS" : "arn:aws:iam::111122223333:user/saligrama”
[

"Action": "sts:AssumeRole"

IAM Role Trust Policies

Motivation: don’t want arbitrary principals to assume roles with access to sensitive resources.

1 Trust policy principals can
"Effect": "Allow", be services, too!
"Principal": 1 K///////////////////

"Service": "ecs.amazonaws.com"
[
"Action": "sts:AssumeRole"

Let’s play around with cloud
(in)security! https://flaws2.cloud

https://flaws2.cloud

