
ASES and Applied Cyber present

Safety and Security
Protecting your users, before and after an incident

January 13, 2023

Aditya Saligrama
Vice President, Stanford Applied Cyber

Teaching Assistant, INTLPOL 268 Hack Lab
saligrama@stanford.edu

Miles McCain
Stanford Internet Observatory, Apple Privacy
Engineering, CISA Election Security, CS 106S

mccain@stanford.edu

mailto:saligrama@stanford.edu
mailto:mccain@stanford.edu

Growth without security
is not sustainable growth

Growth without security
is not sustainable growth

And security really isn’t that hard!

“Security”

Protecting against
unintended access

Cybersecurity

Mitigating harmful or
abusive behavior

Trust & Safety

The Stamos
Hierarchy of the
Actual Bad Stuff
that Happens Online
to Real People

Abuse
(Trust & Safety)

Cybersecurity

Cyber-
security

Account Lifecycle/Passwords

Patching

Simple Config Errors

Old App Vulns

0-day
Academic{

Cybersecurity

Case study: Stanford Link (2020)

● Match with your crush if they like you back
● Website keeps you anonymous if they don’t

Case study: Stanford Link (2020)

● Match with your crush if they like you back
● Website keeps you anonymous if they don’t
● What could go wrong?

Case study: Stanford Link (2020)

Case study: Stanford Link (2020)

Don’t lie about your security

1. There was no encryption on Link’s site

2. Encryption could have prevented this access

3. Why even mention Microsoft SEAL?
It’s the wrong kind of encryption for this use

4. Databases do not work this way

Aside: don’t send official-looking spam

The fastest web crash course ever

Our Internet Abstraction

HTTP: the missing language of the web

Session Handling: How does a website remember?

● Cookies!

● Cookies enable web servers to store
stateful information in your browser

● Authentication cookies are used to
authenticate that a user is logged in, and
with which account
○ On login: Set-Cookie: session=session-id

Common insecure design patterns
And ways to avoid and mitigate them

Case study: Stanford Marriage Pact (2020)

Case study: Stanford Marriage Pact (2020)

https://mp.com/29d2223b196d87e8e9292308c074e593

29d2223b196d87e8e9292308c074e593

MD5

saligrama@stanford.edu
mccain@stanford.edu

MD5

65af214d836bb936fd32c5c11f93c70d

https://mp.com/65af214d836bb936fd32c5c11f93c70d

http://mp.com/29d2223b196d87e8e9292308c074e593
http://mp.com/65af214d836bb936fd32c5c11f93c70d

Insecure Direct Object Reference (IDOR)

Or: asking the server for the resources you want

Avoiding IDOR

● Ensure that a user is allowed to access a resource before returning it

Avoiding IDOR

● Ensure that a user is allowed to access a resource before returning it

● If not possible (e.g. cloud storage buckets), then make resource URIs
random and unpredictable. Avoid:
○ Automatically incrementing resource IDs
○ Hashing a guessable property such as usernames, phone numbers, or emails

● Instead: use random identifiers such as UUIDs

Case study: Kontra (2022)

Case study: Kontra (2022)

Improper session handling
Cookie itself is insecure

● Can modify cookie to access
another’s account
○ e.g. become admin

Cookie not checked for authorization

● Use your own account to
○ Impersonate someone else
○ Escalate privileges to admin

Consequences are IDOR-like, even when resource IDs are randomized

Avoiding improper session handling

Before taking a sensitive action:

Check the user is who they say they are

Case study: Fizz (2021)

Case study: Fizz (2021)

Users Posts

Case study: Fizz (2021)

Users Posts

Misconfigured Firebase security rules

Clients can directly access the database
(including malicious clients!)

● Database is in charge of validating user
access to data

● Poor validation (e.g. misconfigured
rules) -> unauthorized data access

Avoiding Firebase misconfigurations

● A little harder: Google documentation on good rules is confusing

● Set up unit tests for your rules

Unsanitized user input

● Always assume user input can be malicious

● If user input gets misinterpreted as code, bad things happen!
○ Cross-Site Scripting (XSS)
○ SQL injection

● Using modern

On your own time:
catshare.saligrama.io

Security takeaways

Don’t reinvent the wheel

● Modern frameworks abstract away raw code and data handling
○ Helps avoid user input-related vulnerabilities

Don’t:

● Roll your own cryptography/auth
● Write your own SQL w/ user input
● Modify HTML DOM raw w/ user input

Do:

● Use well-tested frameworks
○ And as much of their native

functionality as you can
● Use managed cloud services!!!

Build with a security mindset

● When building a product/feature, consider:
○ How can this be abused?
○ What can I add to prevent that abuse vector?

Build with a security mindset

● When building a product/feature, consider:
○ How can this be abused?
○ What can I add to prevent that abuse vector?

● There’s no one-size-fits-all approach to security
○ Our advice helps you avoid common mistakes

Build with a security mindset

● When building a product/feature, consider:
○ How can this be abused?
○ What can I add to prevent that abuse vector?

● There’s no one-size-fits-all approach to security
○ Our advice helps you avoid common mistakes

● These concerns apply to all tech products, whether B2C or B2B

It happens to the best of us

Let the community help you

A vulnerability disclosure policy is intended to give ethical hackers clear
guidelines for submitting potentially unknown and harmful security vulnerabilities

to organizations.

Vulnerability Disclosure Policy Resources

DHS Template: https://cyber.dhs.gov/bod/20-01/vdp-template/

DoJ Framework:
https://www.justice.gov/criminal-ccips/page/file/983996/download

HackerOne:
https://www.hackerone.com/blog/What-Vulnerability-Disclosure-Policy-and-Wh
y-You-Need-One

Example Safe Harbor: https://github.com/cybertransparency/vdp-terms

https://cyber.dhs.gov/bod/20-01/vdp-template/
https://www.justice.gov/criminal-ccips/page/file/983996/download
https://www.hackerone.com/blog/What-Vulnerability-Disclosure-Policy-and-Why-You-Need-One
https://www.hackerone.com/blog/What-Vulnerability-Disclosure-Policy-and-Why-You-Need-One
https://github.com/cybertransparency/vdp-terms

Please don’t do this

Trust & Safety

Terrorist content

Explicit threats of
violence

Criminal organizations

Glorification of violence
Child sexual abuse

material (CSAM)

Solicitation of minors
(grooming)

Non-consensual
intimate imagery
(“revenge porn”)

Sexual extortion
(“sextortion”)

Human trafficking

Spam

Hate speech

White supremacist
content

Violent imagery
Images of animal

cruelty

Images of animal
cruelty

Stalking

Suicide and
self-harm content

Doxxing

Mis/disinformation

Copyright violation

Case study
Ridesharing platform

● Your ridesharing platform
offers a $5 credit on users’
first ride

● You see very strong growth
of DAUs, but retention and
conversion is non-existent

● You observe that many
new rides happen along
the same route

Case study
Ridesharing platform

What are some potential
mitigations?

● Your revolutionary video
sharing platform is gaining
popularity around the
world

● Users begin to upload
highly graphic content —
though not illegal under
U.S. law

● You worry this content will
hurt your brand

Case study
Video sharing platform

What are some potential
mitigations?

Case study
Video sharing platform

Complications:

● Your app is popular in Ukraine,
and hosts media documenting
Russian war crimes

● Your mitigation deleted some of
this evidence

● You have received a threat from
the Russian Government to take
down all Ukraine-related
content — or else

Case study
Video sharing platform

● Your revolutionary new
social media platform has
a copyright abuse problem

● Someone keeps posting
copy-pasted articles and
film clips

● You’ve received a cease &
desist from a major media
conglomerate

Case study
Consumer social

What are potential mitigations?

Case study
Consumer social

Let’s play with a real
moderation API:
perspectiveapi.com

Proactive
measures

Reactive
measures

Proactive measures

Automated content safety APIs, e.g.,

● PhotoDNA for CSAM
● Perspective for hate speech
● Google Cloud Vision APIs for gore,

sexual content, violent content, etc.

Design-level considerations, e.g.,

● Give users agency over what they
see (blocking, muting, etc.)

● Be mindful of opportunities for
algorithmic manipulation

● Have clear content guidelines

Reactive measures

Have visibility into your platform

● Periodically review a random sample
of activity

● Monitor user activity for anomalies
● Be mindful of cultural differences

and norms

Let your users be your eyes + ears

● Add the ability to report bad content,
even when you think it’s
unnecessary

Wrapping up

Nothing is 100% secure

You are a target

Don’t wait and see;
be proactive!

Data brings responsibility and risk

Talk to us!

Additional Security Resources

Security 101 for SaaS Startups (please read this one):
https://github.com/forter/security-101-for-saas-startups

https://github.com/forter/security-101-for-saas-startups/blob/english/security.md

Credits

● Stamos’s Hierarchy, Web Crash Course – Alex Stamos, INTLPOL 268 Hack
Lab

● Web Crash Course, IDOR/XSS/Session Handling Slides, Marriage Pact IDOR
Case Study – Cooper de Nicola, CS 106S Coding for Social Good

● Stanford Link, Fizz articles – The Stanford Daily
● Firebase web app vs. Traditional web app graphic – Iosiro Security
● CatShare – Cooper de Nicola, Aditya Saligrama, George Hosono

