
Fantastic OAuth tokens and 
where to find them

Aditya Saligrama + Glen Husman



https://developers.google.com/identity/protocols/oauth2



Some Vocabulary & Some Reading

This is a summary – there are confusing 
subtleties!

https://developer.okta.com/blog/2017/06/21/
what-the-heck-is-oauth
https://oauth.net/articles/authentication/

Client Application / Relying Party: App which receives 
delegated authorized access from another server, or 
relies on another server for authentication. e.g. Firebase 
apps!

Authorization Server / Identity Provider (IdP): Server 
to which the user authenticates, and on which user 
consents to authorizing the app. e.g. Google!

OAuth 2.0: Authorization standard. Client apps prompt 
for authorization, receive an opaque access token to 
access a resource (identified by “scopes”).

OpenID Connect (OIDC): authentication standard built 
on OAuth 2 – used by (e.g.) Sign In With Google). 
Extends OAuth to return a verifiable ID token making 
claims (e.g. the user has X email) – in addition to the 
access token.

https://developer.okta.com/blog/2017/06/21/what-the-heck-is-oauth
https://developer.okta.com/blog/2017/06/21/what-the-heck-is-oauth
https://oauth.net/articles/authentication/


2-legged vs 3-legged

3-legged: user, client app, and authorization (authz) server are all different 
entities

2-legged: user and client app are ‘the same’ e.g. JS webpage

Why the difference?

- In 3-legged, client app can hold secrets hidden from (untrusted) users
- Authz server needs to have a way to know it’s passing the token back to the 

real client app, not an imposter client app



2-legged vs 3-legged

How to authenticate the client application?

- 3-legged: client secret —> can be used to get token
- 2-legged: authz server will only redirect to defined web origins



What is an origin?

https://cs155.stanford.edu/lectures/08-web.pdf

https://cs155.stanford.edu/lectures/08-web.pdf


OAuth in practice: Firebase apps



Usually: user/pass auth in Firebase

● Firebase auth: need to pass Firebase instance tokens
○ API key: assigned by Firebase on project creation
○ Project ID
○ Storage Bucket
○ Messaging Sender ID
○ App ID: used by Firebase to ensure only the correct app accesses the project 

● Then pass username/password. On successful login:
○ Firebase returns JWT token 
○ Transmitted on further requests to the database



Alternatively: phone/OTP auth



Firebase security testing

● With username/password or phone/OTP auth, easy to get a JWT token and 
have it saved for any requests

● Just use Baserunner!

https://github.com/iosiro/baserunner

https://github.com/iosiro/baserunner


Firebase security testing v2: Google auth only

● Baserunner doesn’t support Google auth
○ Due to origin restriction on logins
○ https://github.com/iosiro/baserunner/issues/2

● Goal: get an OAuth token where we can run:

GoogleAuthProvider.credential(id_token);

https://github.com/iosiro/baserunner/issues/2


App Google client ID
Can find from “Network” tab in inspect element



Attempt 1: http://localhost:8080



Attempt 1: http://localhost:8080



:(



Attempt 2: http://PROJECTID.firebaseapp.com



Attempt 2: http://PROJECTID.firebaseapp.com



Attempt 3: HTTPS



Attempt 3: HTTPS



Attempt 3: HTTPS



Leaving localhost open as a possible origin

● This is not a security hole!
○ Origin restriction just prevents https://evil.com from getting a OAuth token for 

https://legitapp.com
○ If you’re running something on http://localhost, you have root access to the machine

■ Bigger concerns than just getting an OAuth token

https://evil.com
https://legitapp.com
https://localhost:443

